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ABSTRACT

This paper presents the concept of the Media State Vec-
tor (MSV), a representation of uni-dimensional motion in
real time, intended as a general basis for synchronization of
distributed media presentations. The MSV concept is moti-
vated by the idea that motion can be decoupled from media
presentations, and that media presentations can be modeled
as client-synthesized functions of motion. Implementation of
the MSV concept for the Web allows us to construct naviga-
ble, synchronized, multi-device, multimedia presentations,
spanning computers across the Internet. In particular, me-
dia presentations may be hosted by regular Web browsers
on a range of devices, including smart phones, pads, laptops
and smart TVs. Our proof of concept implementation bases
its accuracy on primitive, centralized, ad-hoc, application-
level clock synchronization. Still, in our experiments 80% of
clients were able to synchronize across Europe, with a max-
imum error less than 120 ms. Inter-client synchronization
error of about 33 ms is demonstrated between three screens
in London (UK), synchronized via a server in Tromsø (Nor-
way). These results, along with the lightweight, scalable,
generic and minimalistic nature of MSV synchronization,
lead us to propose the MSV concept as a foundation for
cloud-based media synchronization.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems
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1. INTRODUCTION
We perceive media presentations as combinations of con-

tent and navigation. For instance, consider any media event,
be it a major sports event, a riot, or simply a gathering of
friends. The media output may include a variety of content
types, ranging from images, Twitter messages and amateur
videos to TV news reports, radio interviews and newspa-
per articles. More elusive perhaps is the pervasiveness of
media navigation. End-users play, pause and rewind videos,
and they navigate image galleries and news feeds in stepwise
fashion, forwards and backwards. Live TV broadcasts may
include short segments of instant replay, possibly in slow-
motion. A time-lapse is the opposite, where media content
is navigated at high speed. Furthermore, time-shifting can
be understood as media navigation, whether performed by
the end-user on a DVR (Digital Video Recorder), or by the
TV provider as the delaying of a live broadcast.

Media navigation is thus an integral part of the media
landscape, yet implementations are often custom and tightly
bound to media types and visual presentation. We propose
a novel, unifying concept for media navigation, the Media
State Vector (MSV). The MSV is an encapsulation of uni-
dimensional motion in real time, serving as a generic rep-
resentation of media navigation. The central motivation is
the decoupling of media navigation from content and presen-
tation. Decoupling enables shared navigation for multiple
presentation components and multiple content sources. Fur-
thermore, decoupling and encapsulation allows media navi-
gation to be shared across a network. With the emergence
of cloud services for media presentations, the latter is par-
ticularly relevant. While media content is steadily migrated
into cloud services, media navigation typically remains lo-
cal. We conjecture that media navigation too can be hosted
by cloud services using MSVs as synchronization points for
clients across the Internet.

A new perspective on media presentations is attainable
once content and navigation are both hosted by cloud ser-
vices. Now media presentations conceptually execute, not
at the clients, but in the cloud. Access to the media presen-
tation is mediated through views hosted by client devices.
This change in perspective has profound implications. By
enabling multiple end-users to simultaneously interface with
a single media presentation, each through their own view,
collaborative viewing and social interaction becomes integral
to media presentations. Or, by splitting content and pre-



sentation between multiple views, utilizing the strengths of
different devices, a solution is provided for secondary screen
scenarios.

Accurate synchronization is required to support this ab-
straction. If a media presentation is requested to play in
one view, all views must play in synchrony. MSV synchro-
nization does this. It is a general, lightweight and scalable
approach that can be implemented in any network. How-
ever, there is a often a trade-off between accuracy and scope.
MSV synchronization implemented for a LAN environment
may be highly accurate, but limited to devices on the same
network. In this paper we focus on synchronization of media
navigation across the Internet. We argue that the latency
and accuracy associated with MSV synchronization is ac-
ceptable for many media applications, given the significant
benefits offered by cloud-based media navigation.

We have implemented MSV synchronization for the Web.
This allows us to quantify the accuracy of synchronized,
cloud-based media navigation. The availability of synchro-
nized clocks is not assumed. In our implementation, syn-
chronization accuracy depends on primitive, application-level
estimation of clock skew. This implies that our results are
conservative, and that accuracy can be improved by the
use of better estimation techniques and access to low-level
network and timing primitives. Equally important, it im-
plies that any networked device is allowed to participate in
synchronized, cloud-based media navigation. In particular,
standards compliant Web browsers can readily host synchro-
nized presentation views without requiring additional plug-
ins or modification.

2. PROBLEM DEFINITION
The main objective for this thesis is to propose a general

mechanism for Web-based, multi-device media navigation.
In the interest of generality, we deliberately avoid a discus-
sion of particular media applications. Instead, requirements
are derived from the abstract idea of a media presentation
implementing the cloud abstraction. By this we mean 1) a
media presentation that can be perceived as being a sin-
gle entity residing in the cloud, and 2) that access to media
presentations is mediated through views hosted by client de-
vices.

1. Synchronous Navigation. All participating views shall
navigate the media presentation in best-effort synchrony,
at all times. Navigational changes requested in one
view shall affect all views as quickly as possible.

2. Symmetric Navigation. All participating views shall
be equally able to control common navigation.

3. General Navigation. A wide range of navigational prim-
itives shall be supported, including primitives imple-
mented by traditional categories such as e-books, au-
dio, video, animations and slideshows.

4. Device Heterogeneity. Any networked device shall be
able to host a view into a synchronized media presen-
tation, including smart phones, pads and smart TVs.

5. Content Heterogeneity. Presentation views shall not
be limited to a single media type or a single transport
mechanism. Multiple media types (e.g., text, images
and videos) may be part of a single view presentation.

6. View Heterogeneity. Devices shall be able to present
different views related to the same media presentation.
This way, devices with interactive ability may host
views for navigation, selection and text input, whereas
TVs may be used primarily to host visual components
such as video, pictures, or maps.

7. View Autonomy. Participating views shall not depend
on other participating views.

These are overall requirements. In addition there are cer-
tain requirements that relate to specific instances of media
presentations. By, instance we mean the following: If two
views are participating in synchronized navigation they may
be perceived as connected to a single instance of a media pre-
sentation. In contrast, if two views are hosting the same con-
tent and presentation, but navigation is independent, then
they are connected to distinct instances.

8. Simple Instance Management. It shall be easy to cre-
ate (or delete) an instance of a media presentation.

9. Dynamic Instance Membership. All views shall be able
to join or leave the media presentation at any time,
without affecting other views or the presentation in-
stance in any way. Joining views shall be able to
quickly synchronize with existing views.

10. Instance View Independence. An instance of a me-
dia presentation shall be independent of client views.
This implies that a running media presentation shall
continue to run, even though no views exist.

11. Instance Autonomy. Multiple instances of the same
media presentation shall be able to coexist, yet be in-
dependent of each other. This way, multiple groups
of views may navigate the same media presentation
simultaneously. Groups maintain internal synchrony,
but in-group navigation shall not affect other groups.

12. Instance Identification. A particular instance shall be
easily identifiable so that invitations to join can be
shared and distributed.

These are all functional requirements. In order for the
mechanism to be appropriate as basis for a cloud-based ser-
vice there are also non-functional requirements. Multi-device
media navigation on the Web must be highly scalable, sup-
port reliable implementation, and preferably be open.

A number of multi-device media technologies address some,
but not all of the above requirements. For example, broad-
cast technologies such as TV, desktop-sharing, web-cast and
video conferencing systems support instance view indepen-
dence and view autonomy, but often lack ability for sym-
metric navigation and view heterogeneity. Secondary screen
applications target view heterogeneity and device hetero-
geneity, but typically do not support symmetric navigation
or view autonomy. Google Plus Hangout1 and SynchTube2

support synchronized navigation of YouTube videos. Both
solutions are proprietary, restricted to streamed video con-
tent, and the scalability is limited to small groups.

1https://plus.google.com
2http://www.synchtube.com



3. APPROACH
Our approach is defined by a six step argument.

Arg1. Motion is common to all media presentations

All media presentations relate to some notion of direction-
ality or progress. For example, a regular slideshow defines
its progress according to a discrete axis of integers, or slide
numbers. Similarly, a video is related to an axis of real
numbers, usually denoting offset in seconds. A small set of
operations define ways in which progress may be requested
to change. Slideshow operations such as next, prev and goto
cause discrete jumps between slides. Video operations such
as play, pause and skip regulate progress and the rate at
which progress changes (i.e., velocity). We argue that the
notions of progress and navigation that are evident here can
be described under a more general concept of motion.

Arg2. Motion is separable from media presentations

Every application that executes media presentations needs
to maintain an internal representation of motion. Very of-
ten this representation is integral to both media type and
visual presentation. In contrast, we argue that motions can
be cleanly decoupled from media presentations, to which
they are both cause and effect. Decoupling of motion from
content and presentation allows us to think of motion as an
object in its own right. Furthermore, it allows a single mo-
tion to be shared between multiple content sources, content
types and presentation components.

Arg3. Media presentations are functions of motion and
content.

We perceive media presentations as functions of motion
and content. Media presentation F is at all times a function
of motion m and content c: F (m, c). Here, we define media
content as a set of media objects, each related in some way
to an abstract axis of progress. At any time, motion along
this axis defines which media objects, and what parts of
media objects must be presented. Thus, F maps motion and
content to presentation. More complex media presentations
may be functions of multiple motions and multiple content
sets, e.g., G(m1,m2, . . . ,mn, c1, c2, . . . , cm).

Arg4. Synchronize motion, not content

Our approach to synchronization of media presentations
is defined in terms of synchronization of motions. Two me-
dia presentations F and F ′ are said to be synchronized if a
motion from F is synchronized with a motion from F ′. With
this definition two media presentations can be synchronized,
although their visual (or audio) appearances have nothing
in common. This differs from traditional approaches, where
synchronization is often defined in terms of similarity of pre-
sentation. However, note that motion-based synchronization
may also be used to achieve similarity. By synchronizing all
motions of two identical3 media presentations F and F ′,
identical presentation is approximated.

Arg5. Motion is an object on the Web

Synchronization between different devices requires syn-
chronization of motion across a common network. We fa-

3Media presentations F and F ′ are identical iff m = m′
⇒

F (m, c) = F ′(m′, c) ∀ values of m. Here we assume c to be
shared and static.

cilitate synchronization of motion by making motion an ob-
ject on the Web, i.e., available on the Internet using the
HTTP protocol. This way all connected devices, including
Web browsers, may participate in synchronized media pre-
sentations simply by being clients to the same instance of
motion. In short, we are migrating instances of motion from
the private world of client applications into the public world
of the Web.

Arg6. Client-side synthesis of media presentations

We advocate a world where media presentations are syn-
thesized in real time by client devices, in response to mo-
tion. There are several reasons why we think this is feasible.
First, modern client devices increasingly feature high com-
putational power and high bandwidth Internet connections.
Second, client-side synthesis is a foundational idea of the
Web. Web browsers synthesize documents from collections
of resources. Similarly, client devices may weave together
media presentations in real time, from multiple media types
and content sources. Third, client-side synthesis implies that
media presentations can integrate with current and future
services of the Web, while executing.

In summary, this approach to organizing, executing and
synchronizing media presentations promises to be liberating
in several ways. It releases navigable media presentations
from the strict limitation of being single-device. It also does
away with the limitations of being single content source,
single transport mechanism, single media type, single visu-
alization or single user.

The scope of this paper is limited to the challenge of syn-
chronizing motions across a network. We do not discuss spe-
cific applications of motion synchronization. Furthermore,
challenges concerning the implementation of media presen-
tations as functions of motion and content are not covered.
This includes common issues such as media specification,
timely content delivery, and synchronization of content rel-
ative to motion. We refer to these topics only briefly in
related work, Section 8.

4. THE MEDIA STATE VECTOR
The Media State Vector (MSV)4 is the central concept

underlying our implementation of motion synchronization.
The MSV is an object that describes uni-dimensional motion
in real time. It is based on a general and well known model
for describing motion: the classical equations of uniformly
accelerated linear motion5. This is a deterministic model,
implying that any movement can be described in terms of
initial conditions and the time that has passed since these
conditions were set. The MSV describes motion as a time
sequence of distinct, deterministic movements. The MSV
defines two operations, query and update. Query returns a
snapshot derived from the current movement. Update re-
places the current movement with a new one.

4.1 Internal State
The internal state of an MSV is a vector with four real

numbers [p, v, a, t] representing initial position (p), velocity

4MSV demo at http://goo.gl/QuHzN
5Uniformly accelerated linear motion was chosen because
it is well known and maps well to common navigation in
media presentations. The crucial point is that the model is
deterministic.



(v), acceleration (a) and time (t). Position fixes an abstract
point to a one dimensional axis at time t. Time t is expressed
in seconds. Velocity denotes the rate at which position is
changing at time t, expressed in position-units per second.
Similarly, acceleration denotes the rate at which velocity is
changing at time t, expressed in position-units per second
squared. The MSV concept is named after this internal state
vector.

internal state: [pi, vi, ai, ti], where ti is initial
time of current movement.

4.2 Query
The MSV may be queried at any time for a snapshot de-

rived from its current movement. The query operation is
atomic.

query(): returns [p(t), v(t), a(t), t], where t is time
of processing the query operation, and

p(t) = pi + vi(t− ti) +
1

2
ai(t− ti)

2 (1)

v(t) = vi + ai(t− ti) (2)

a(t) = ai (3)

For instance, if the query operation returns [1.2, 2.0, 0.0, t]
at time t, then a new query a second later should return
[3.2, 2.0, 0.0, t + 1]. It may be helpful to think of the MSV
as representing a single floating point variable that changes
dynamically in real time. This variable corresponds to MSV
position p. In this perspective, velocity v and acceleration a
are just supplementary information, describing exactly how
position p changes in time. MSV position p has no pre-
scribed unit. Instead, applications define its meaning in ap-
plication specific terms, e.g., discrete slide numbers or con-
tinuous media time offset.

4.3 Update
The MSV update operation allows the current movement

to be replaced by the next. This is achieved simply by over-
writing the internal state of the MSV. The triplet (p, v, a)
describes the next movement and are given as parameters
to the update operation. The update operation is atomic,
thereby ensuring strict ordering of updates.

update(p,v,a): sets [p, v, a, t] as new internal state,
where t is time of processing the update opera-
tion. The return value is the new internal state.

The parameters for the update operation are optional, i.e.,
null values may be supplied. This provides a simple mech-
anism for tying movements together. The idea is to allow
one aspect of the movement to be updated while preserv-
ing the others. For instance, update(null, v, null) means
update velocity while preserving position and acceleration.
Note that the values we want to preserve are not from the
internal state, but rather from a snapshot of the MSV, taken
at exactly the time when the update is processed.

The update operation is quite expressive. For example,
update(null, 1.0, 0.0) and update(null, 0.0, 0.0) implements
play and pause operations typical for video content. By us-
ing the query operation, relative updates can be constructed.
For instance, update(floor(query()[0]+ 1.0), 0.0, 0.0) imple-
ments the discrete next operation typical for slideshow and

list navigation. update(10.0, null, null) skips to a new posi-
tion, but preserves velocity and acceleration. update(10.0,−1.0, 1.0)
skips to a position and starts a backwards motion with ac-
celeration in the positive direction. Note also that clocks
are a special case of the MSV, where velocity is constant.
Given an epoch value in seconds (past, present or future),
update(epoch, 1.0, 0.0) creates the appropriate clock.

Acceleration may not be required by, or even applicable
to, all types of media presentations. However, if applicable,
it may offer smooth transitions between different playback
velocities. This is particularly relevant for media presenta-
tions that do not include continuous media types (i.e. audio
or video). For example, a media presentation that visualizes
time series of scientific data might contain long segments of
static data, or few data points. Acceleration and decelera-
tion may then be used to smoothly navigate these segments,
without losing the sense of time. Similarly, a visualization
of evolutionary history may start out with bacteria at high
velocity, and decelerate as the narrative closes in on the
present. Indeed, in this case a motion with non-constant
acceleration might be preferred. If so, such motions may be
implemented by means of step-wise approximation.

4.4 Update Event
The MSV additionally supports one event (callback) asso-

ciated with the update operation. This allows objects that
interact with the MSV to detect updates applied by other
objects, asynchronously. The update event includes a copy
of the new internal state of the MSV (i.e., the result of the
update operation). There is no requirement on the MSV
to process an update request immediately. Interacting ob-
jects must wait for the update event (or update response)
to acknowledge the effects of requested updates.

update event: includes [p, v, a, t], the new internal
state of the MSV.

4.5 Range Restrictions
The ability to enforce range restrictions on position, veloc-

ity or acceleration is optional, but is often a helpful feature.
For instance, a range on position [0.0, 123.0] would be ap-
propriate for a media presentation with a limited duration
of 123.0 seconds. In general, as soon as a movement of the
MSV violates one of its range restrictions, the movement
needs to be replaced by a legal one. The MSV enforces its
own range restrictions by protecting itself from illegal up-
dates and by detecting range violations as time passes. The
deterministic model allows the MSV to precisely predict fu-
ture range violations. By means of a timeout mechanism
it can then schedule the appropriate update operation on
itself. In the above example update(123.0, 0.0, 0.0) will be
executed at the exact time playback position has reached
the end. From the perspective of an interacting object, this
kind of update is indistinguishable from an update requested
by another object.

5. MSV SYNCHRONIZATION
Cross-network motion sharing allows distributed media

components to be perceived as parts of the same media pre-
sentation. In our approach motion sharing is facilitated by
making MSVs available on the Web. However, MSV syn-
chronization is a conceptual contribution and can be imple-
mented across any network. This section presents MSV syn-
chronization in general terms, without referencing particular



network assumptions, implementation details or application
requirements.

In the following an MSV instance hosted by a server is de-
noted as a server MSV. Similarly, an MSV instance hosted
by a client device is denoted as a client MSV. MSV synchro-
nization requires a client MSV to continuously mirror the
motion of a server MSV. If multiple clients mirror the same
server MSV, synchronization between clients is achieved by
implication. This is illustrated by Fig. 1. All update re-
quests applied to client MSVs are forwarded to the server
MSV. After the update has been processed, update events
are transmitted to all clients. A single online MSV on the
Web can be the source of motion for multiple client devices
and/or multiple media presentations.

PHONE

TV

PAD

CLIENT MSV

MSV SERVER

NETWORK

SERVER MSV

Figure 1: Three devices synchronizing their client
MSVs with a single server MSV, across a network.

MSV synchronization involves two distinct challenges. First,
update operations processed by the server MSV must be
communicated to and processed by all client MSVs as quickly
as possible. We call this update synchronization. Second, af-
ter processing update events, client MSVs need to maintain
motion synchrony until interrupted by the next update, pos-
sibly indefinitely. We call this regular synchronization.

5.1 Update Synchronization
Update synchronization depends primarily on quick noti-

fication of client devices. An effective and dependable push
mechanism is required. Such a mechanism allows update
events to be transported from the server to clients with-
out unnecessary delay, thus avoiding extensive cross-network
polling by clients. The diagram A at the top of Fig. 2 illus-
trates this scenario. It portrays the real time control flow
of one server and two clients (horizontal lines). At time t1
an update is processed by the server and transmitted to its
clients. At time t2 and t3 the update events are received by
the two clients.

Transport delay trans is defined to be the real time in-
terval between an update being sent by the server to it be-
ing processed by the client. Diagram A illustrates different
transport delays for client 1 and 2, i.e., trans1 = t3 − t1
and trans2 = t2 − t1. Such variation in transport delay is
a source of asynchrony for update synchronization. So, the
accuracy of MSV update synchronization depends on the
variation in trans.

It is possible to improve the accuracy of update synchro-
nization by introducing extra delay in the client, in order to
mask variation in transport delay. We discuss this option

server

client 1

client 2

t1 t2 t3

A)

B)

C)

D)

p(t)

server

t

p(t)

client 1

t

p(t)

client 2

t

Figure 2: MSV synchronization with one server and
two clients.

further at the end of Section 5.2.

5.2 Regular Synchronization
Regular synchronization involves maintaining synchrony

in the indefinite time interval between updates. Due to the
deterministic nature of the MSV, clients require only the last
update event in order to monitor and predict MSV behavior
locally. The resolution of the local MSV is determined by
the resolution of the local system clock. Thus clients can
support a local representation of a server MSV, with high
time resolution, without penalizing the network.

Still, high resolution is not enough. Ideally motions should
play out simultaneously at server and client. In order to ap-
proximate this, differences between server and client clocks
are taken into account. The idea is to synchronize MSVs
simply by correcting for clock differences in the time element
of the update event. So, [p, v, a, tserver] must be transformed
to [p, v, a, tclient] by the client MSV. Here tserver and tclient

are values of server and client clocks at the same instant
in real time. To achieve this transformation we depend on
clock synchronization. The client has access to a software
clock C(t) synchronized with the server clock. C(t) takes
input t from the client clock and outputs the corresponding
value of the server clock. Furthermore, E(t) is introduced to
estimate the fixed value tclient. This way the internal state
of the client MSV becomes [p, v, a, E(t)]. Estimator E(t) is
a function of client time t.

E(t) = tserver + t−C(t) (4)

To verify the correctness of equation 4, consider a query
processed by the client MSV. In equations 1 and 2 (see Sec-
tion 4.2) the time delta (t− ti) is computed, where t refers
to processing time and ti refers to the time element of the
MSV internal state. Replacing ti with E(t) yields time delta



(C(t) − tserver). If C(t) is a perfect estimator of the server
clock, then at any point in real time the time delta used by
the client MSV is exactly equal to that used by the server
MSV. Thus, the accuracy of MSV regular synchronization
is determined by the accuracy of the software clock C(t).

Using a client-side software clock C(t) additionally im-
plies that MSV synchronization can handle clock drift, pro-
vided C(t) can. MSV dependence on C(t) ultimately means
that the progression of the client MSV is determined by
the system clock of the server, not the system clock of the
client. This is appropriate because synchronized motions
should ideally play out simultaneously at multiple devices,
indifferent to relative differences in clock frequency.

Fig. 2 includes three diagrams B, C, and D illustrating
synchronization of motion. The horizontal axis represents
increasing time, and the vertical axis represents the position
element of the MSV, as a function of time. The time axis of
each diagram is aligned so that motions can be compared.
Vertical lines represent the same instant in real time.

The first diagram, B, illustrates the behavior of the server
MSV. Initially the position is constant in time. At time t1
an update is applied and the motion continues with non-zero
velocity.

Diagrams C and D illustrate how this motion is reported
by two client MSVs, client1 and client2. Compared to the
server MSV, both clients report incorrect values for a small
interval transi (i.e., the time it takes to propagate an up-
date event from the server to a client). This is the incorrect
continuation of the movement that was just interrupted at
the server. However, as soon as the event updates are re-
ceived, the client MSVs again report correct motion. These
diagrams depict an ideal situation where C(t) is perfectly
estimated. Imperfect estimation will shift the client motion
to the left or to the right in this diagram.

The fact that MSV synchronization reports incorrect mo-
tion during a short interval might be a problem for some
applications. If so, the problem can be avoided by delaying
motions by a fixed delta on all clients equally. As long as
delta is set larger than the sum of the maximum trans and
the maximum error in C(t), update events will be received
by clients before they are due. This approach preserves the
integrity of the motion, but increases update latency. Long
update latency may be confusing for the end-user, unless
it is properly communicated in the user interface. In addi-
tion, delaying motions will mask variation in trans between
clients, as noted in Section 5.1. This strategy implies that
the accuracy of update synchronization becomes equal to
the accuracy of regular synchronization. Motion delay can
be implemented in MSV clients by replacing software clock
C(t) with a modified version C′(t) = C(t) − delta. In ef-
fect, a positive delta shifts the server clock back compared
to the client clock. Update events must also be delayed and
applied according to this modified server clock C′(t). delta
is considered a property of the server MSV, available for all
MSV clients.

MSV synchronization errors, i.e., errors in C(t), manifest
as errors in MSV position and velocity. However, the size
of these errors will depend on the specific motion. For in-
stance, if acceleration is non-zero, the error in C(t) will be
squared as position is computed. Similarly, there is no error
in position if velocity and acceleration are both zero. Thus,
pause operations will always cause synchronized MSVs to
agree on position, even though clock synchronization might

be inaccurate.
Note also that synchronization errors do not threaten the

consistency of MSV synchronization. Update requests are
serialized by the server, according to the server timeline.
This ensures agreement on ordering and timing among clients,
independent of inter-client synchronization errors. So, if one
client struggles with a poor estimate for C(t), other clients
are not penalized. This is in accordance with requirement 7
of Section 2; View Autonomy.

On the other hand, synchronization errors do affect the
integrity of the motion reported by clients during update
synchronization. Especially, for clients that run ahead of the
server (in real time), the synchronization error adds to the
interval of incorrect motion. The integrity of a motion may
also be violated if C(t) experiences sudden jumps. There
are several possible strategies for dealing with this. Cris-
tian [1] outlines an implementation of a monotonically in-
creasing C(t) where jumps are implemented gradually. An-
other strategy is to integrate jumps only when new update
events are applied to the client MSV. It is also possible to
enforce a short bootstrapping period so that C(t) becomes
reasonably stable before the MSV is used. The best strategy
is likely to be application dependent.

Finally, since C(t) can not in general be known a priori,
an ad-hoc estimate must be created as clients initiate MSV
synchronization. In Section 6 we outline how Web browsers
may implement this at application level and the accuracy
that can be expected for this approach in the real world.

5.3 Meeting the Requirements
In Section 2 we asserted a number of requirements for

synchronized media navigation supporting navigable, multi-
device media presentations. Here we briefly argue that MSV
synchronization meets these requirements. Synchronous Nav-
igation (1) and Symmetric Navigation (2) are ensured by
the combination of update synchronization and regular syn-
chronization. The generality and expressiveness of the MSV
concept supports General Navigation (3). The availability
of MSVs on the Web, and the simplicity of the synchroniza-
tion protocol imply that any networked device may partici-
pate in MSV synchronization, thus Device Heterogeneity (4)
is achieved. MSV synchronization is also content agnos-
tic, thereby facilitating Content Heterogeneity (5) and View
Heterogeneity (6). View Autonomy (7) is a consequence of
the client-server architecture underlying MSV synchroniza-
tion. In addition, all the requirements concerning presen-
tation instances relate to MSV instances hosted by MSV
servers. Trivial operations to create and delete MSV in-
stances ensure Simple Instance Management (8). Dynamic
Instance Membership (9) is achieved by letting devices freely
connect and disconnect from MSV instances. Instance View
Independence (10) is ensured since MSV instances exist in-
dependent of client views. Instance Autonomy (11) is achieved
by creating multiple MSV instances for a single media pre-
sentation. URIs to MSV instances are used for Instance
Identification (12). Finally, the light-weight nature of MSV
synchronization suggest that it can be the basis for highly
scalable synchronization services.

6. IMPLEMENTATION
We have implemented the MSV concept for the Web, in

the interest of wide applicability, and with the intent of
demonstrating the feasibility of Web-based media naviga-



tion. The implementation targets the real world scenario; a
range of devices using different network carriers and a va-
riety of Web browsers. This scenario informs our design
choices.

First, we require that our implementation of MSV syn-
chronization works in standards compliant Web browsers,
without requiring any plugins or other modifications. Sec-
ond, we do not assume the availability of synchronized clocks,
nor do we assume access to low level network or timing mech-
anisms. This means that cross Internet clock synchroniza-
tion (See Section 5.2) will have to be implemented at the
application level, using the network and timing mechanisms
available in regular Web browsers. Third, to make sure our
results are conservative we are satisfied with a primitive im-
plementation of clock synchronization. Note however that
future developments may affect these limitations. In par-
ticular, availability of NTP [2] synchronized clocks in Web-
browsers would imply that MSV synchronization accuracy
would be determined by the accuracy of NTP. This is an
attractive avenue for further research.

We have made a reference implementation of an MSV
Server in Python. In addition we have implemented a JavaScript
library allowing regular Web browsers to participate in multi-
device media presentations. Both the MSV Server imple-
mentation and the JavaScript library are open source6. This
section briefly presents the MSV Server, the JavaScript li-
brary and our primitive approach to clock synchronization.

6.1 MSV Server
The MSV Server7 is an HTTP server capable of hosting

MSV instances. Each MSV instance is identified by a unique
URI. The MSV Server supports query and update operations
targeted at specific MSV instances. These requests are con-
structed by supplying query parameters to the MSV URI.
In addition the MSV Server supports on-demand creation
and deletion of MSV instances. The MSV Server responses
are JSON data, each less than 500 bytes. Table 1 defines
a RESTful API for the MSV Server. A GET request to
MSV URI without parameters returns a HTML representa-
tion of the MSV.

Table 1: RESTful MSV Server API
Operation Method Path Parameters

query GET MSV URI cmd=query
longpoll GET MSV URI cmd=longpoll
update POST MSV URI p=0.0&v=1.0&a=0.0
create POST SERVER URI range=[0.0,123.0]
delete DELETE MSV URI

An efficient and reliable push mechanism is a crucial as-
pect of the MSV Server implementation. We have imple-
mented this by means of long polling8 (without the use of
persistent connections). In order to be notified of MSV up-
dates each client needs to keep one connection open to the
server. Then, as an update event occurs at a given MSV,
the server sends the update event to appropriate clients via
open connections. After this the connections are closed and
the clients have to reconnect to receive further event up-
dates. Web browsers (or network intermediaries) may cause
unused connections to be terminated after a while. To avoid

6Not publicly available yet.
7MSV Server demo at http://goo.gl/545e2
8http://tools.ietf.org/html/rfc6202

this the MSV Server forces any client to renew its long poll
connection when it has been unused for a certain period, say
30 seconds. While pipelining over persistent connections or
Web Sockets9 are alternative solutions, long polling was cho-
sen in the interest of simplicity and wide applicability.

The MSV Server maintains one open connection per client.
An MSVSet abstraction is implemented to let a single client
synchronize with multiple MSVs without consuming more
than a single long poll connection. For our reference im-
plementation the number of open connections is a limiting
factor with respect to scalability. However, existing cloud
services indicate that it is possible to scale services consid-
erably in this regard.

6.2 JavaScript Library
The JavaScript library hides the complexities of MSV syn-

chronization and makes production of synchronized media
presentations possible for any Web developer, requiring only
a basic understanding of the MSV concept. Web develop-
ers need only relate to a local MSV proxy that continuously
mirrors the motion of a server MSV. The API of the MSV
proxy is very similar to the general MSV API suggested in
Section 4.

The library additionally allows creation of purely local
MSVs, i.e., not dependent on any server MSV. Because lo-
cal MSVs and MSV proxies implement the same interface,
they are interchangeable as sources of motion. The abil-
ity to switch between local and remote motions provides an
elegant mechanism for dealing with temporary connection
failures as well as periods of offline media consumption. It
also enables end-users to deliberately switch between private
and shared scope for media navigation while the presenta-
tion is running. Note also that design and development of
presentation views is exactly the same challenge, whether
the view is intended for single-screen or multi-screen media
presentation.

6.3 Clock Synchronization
The current implementation of MSV synchronization is

based on a simplistic implementation of a software clock
C(t). The transformation between server and client clock is
achieved by maintaining an estimate for the relative clock
skew.

C(t) = t+ skew(t) (5)

A positive skew means that the server clock runs ahead of
the client clock. The estimate of skew may change in time,
and is re-evaluated at least every 30 seconds.

Estimates of trans and skew are generally not known a pri-
ori. Therefore clients must estimate these parameters every
time MSV synchronization is initiated, and maintain them
for as long as the session continues. Measurements are col-
lected from all exchanges between client and server. In our
implementation this includes queries, updates and long poll
requests. Estimation does not introduce extra network traf-
fic. However, if needed, clients may issue redundant queries
in order to expedite accurate estimation.

Fig. 3 illustrates how timestamp measurements are col-
lected. The client sends a request at CS. The server receives
the request at SR. The server sends the response at SS, and
the client receives the response at CR. The server response
includes SR and SS so that the client can collect all four

9http://tools.ietf.org/html/rfc6455
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Figure 3: Client-server interaction in real time. Re-
sponse may be synchronous or asynchronous.

timestamps from each exchange. Using these measurements
trans and skew may be calculated as follows [2]. These for-
mulas assume transport delays to be symmetric.

trans =
(CR − CS)− (SS − SR)

2
(6)

skew =
(SS + SR)− (CR+ CS)

2
(7)

Measurements are obtained from a full HTTP request-
response exchange10. We do not assume these results to
be a precise characterization of the properties of the un-
derlying network. After all, Web browsers are usually not
optimized for time sensitive tasks. There is no mechanism
for prioritization of time-critical communication. Multiple
unrelated tasks may be running, potentially influencing time
measurements. Also, the system clock available within the
JavaScript environment rarely supports resolution below mil-
liseconds.

So, the assumption of delay symmetry is very crude and
is not valid for a large fraction of client-server exchanges.
Our solution is inspired by Cristian’s classical algorithm for
probabilistic clock synchronization [1]. The assumption of
delay symmetry is more likely to be sound if we consider
only the client-server exchanges with the fastest round trip
times. Our estimate of skew is continually updated to reflect
the minimum trans measurements recorded so far. As the
number of client-server exchanges grows the skew estimate
is likely to become more accurate and stable.

7. EVALUATION
The evaluation quantifies the accuracy that can be ex-

pected from our implementation of MSV synchronization in
real world scenarios. Measurements of network latency are
collected by non-optimized Web browsers hosted by a di-
verse set of devices, on different networks across Europe.
However, before measurements are presented we briefly dis-
cuss application requirements with respect to synchroniza-
tion accuracy.

7.1 Application Requirements
Requirements for synchronization accuracy depend on the

nature of applications, as well as the distribution of partici-
pating views and devices. A detailed discussion of MSV ap-

10For practical purposes, our implementation of the
MSV JavaScript library employs the Script Tag Hack
(http://javascript.crockford.com/script.html) in order to
avoid the restrictions imposed by the Same Origin Policy
in Web browsers. This means that measurements in our
experiments additionally include the dynamic insertion of a
script element in the DOM tree as well as script evaluation
on response.

plications is outside the scope of this paper. Still, we argue
that MSV synchronization has a wide range of applications,
with synchronization requirements varying from very strict
to very loose.

Scenarios that require strict synchronization have certain
characteristics in common. 1) Participating devices are phys-
ically close to each other so that end-users can observe mul-
tiple devices simultaneously. 2) The media must be time-
sensitive in a way that matches the sensibilities of human
perception. For instance, lip-sync accuracy between audio
and video is a classic example of such a scenario. ATSC11

recommends that audio is ahead of video by maximum 15 ms,
and lags behind video by maximum 45 ms. A worst case
scenario might require lip-sync between a smart phone and
a TV, with the two devices having network connections of
poor, or very different quality. Our primitive implementa-
tion of MSV synchronization cannot guarantee the accuracy
required by this scenario. However, it can get close, and
the final fine tuning may be done with the help of comple-
mentary synchronization mechanisms, e.g., techniques based
on digital watermarks [3]. Alternatively, end-users could be
allowed to adjust this manually through an appropriate pre-
sentation view. In any case, MSV synchronization may serve
as part of the solution.

Equally important, there is a considerable set of applica-
tions where the accuracy requirements are much more re-
laxed. For instance, the secondary screen scenario might
involve enriching a TV broadcast with synchronized media
on a handheld device. As long as the role of the secondary
device is to play background music, present illustrative pic-
tures, maps, graphics, tables or subtitles, the timing require-
ments may be in the range 100–1000 ms12, or even more.
Furthermore, if participating devices are not simultaneously
observable by any end-user, the accuracy requirements are
relaxed simply because it is more difficult to detect synchro-
nization errors. Remote learning and collaborative viewing
may be application domains where this is the case.

7.2 Experiments and Results
Network measurements have been collected from a set of

MSV clients hosted by Web browsers on a diverse set of
devices. The tests were run by members of the P2P-Next
project, counting 76 independent experiments over two days,
all targeting the same MSV server in Tromsø. Each exper-
iment collected timestamp samples (i.e., CS, SR, SS, CR)
from about 24 client-server exchanges taken during a 30-
second session. Project members were encouraged to per-
form multiple experiments with different browsers on differ-
ent devices. Google Analytics revealed the following statis-
tics for our experiments. The geographical origin of clients
were mostly European. A majority of experiments were per-
formed by Norwegian, British and Dutch clients. A few ex-
periments were also contributed from China. Experiments
were conducted from 11 countries in total. Mobile devices
were used in at least 17 of the experiments, including a va-
riety of Android and iOS devices. The participating Web
browsers were identified as Chrome (40%), Firefox (16%),
Android Browser (14%), Safari (14%), Opera (4%), Mozilla
(1%) and Netscape (1%). Internet Explorer is not supported

11Advanced Television Systems Committee (ATSC), IS-191
Relative Timing of Sound and Vision for Broadcast Opera-
tions.

12BBC R&D White Paper WHP185.



by our current implementation. While project members may
not be a random selection of end-users, the experiments
cover a wide range of devices, browsers and networks, as
expected in multi-device scenarios.

7.2.1 Minimum Trans
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Figure 4: Distribution of minTrans for all experi-
ments. The width of each bar is 1 ms. The height
is the number of experiments that have minTrans
values corresponding to the bar’s position on the
x-axis. The corresponding cumulative distribution
illustrates the percentage of experiments that has
minTrans less than X ms.

Each experiment includes one request-response sample that
yields the minimum estimate for trans, which we callminTrans.
This estimate is important for several reasons. It is a good
basis for skew estimates and it provides a standard to which
the other trans estimates can be compared. In addition,
it is indicative of the limitations of the network and the
boundaries for synchronization error and accuracy.

Fig. 4 depicts the distribution of minTrans for all exper-
iments. Most clients have minTrans values between 50 ms
and 100 ms. The worst minTrans recorded by any exper-
iment is 456 ms. The cumulative distribution shows that
about 80% of the experiments have minTrans less than
120 ms.

These results let us speculate about the accuracy of regu-
lar MSV synchronization. In Cristian [1] a limit is given for
the error of clock synchronization, e = D(1 + 2p)−min. In
this formula D corresponds to trans, p is the relative clock
drift and min is the shortest possible trans across this net-
work. We assume that clock drift is negligible over the short
duration of our experiments. However, we cannot safely as-
sume that minTrans is a good estimate of min. For that
to be the case, minTrans would have to be derived from
a much larger data set, spanning a much longer time inter-
val. Instead, we simply assert that e = trans−min, where
0 < min ≤ minTrans. For the particular experiment sam-
ple where trans = minTrans we have e = minTrans−min.
In one extreme, where min is close to zero we have a maxi-
mal synchronization error close to minTrans. On the other
hand, if minTrans is close to min, the synchronization er-
ror becomes much smaller than minTrans. A conservative
guess might be min = minTrans/2. If so, 80% of the exper-

iments would have maximal error less than 60 ms. Note that
this discussion relates to the synchronization error between
client and server. The maximum synchronization error be-
tween two clients is the sum of the maximum error for each
client.

7.2.2 Median and Maximum Trans
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Figure 5: The dotted line shows the difference be-
tween medianTrans and minTrans, for each exper-
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Next we investigate the distribution of trans estimates for
each experiment. Fig. 5 illustrates the median and maxi-
mum values derived from each 24 sample experiment. The
difference between medianTrans and minTrans are shown
by the dotted line. Ideally this line should be close to the
x-axis, as sample distributions with the median close to the
minimum value provide a good basis for probabilistic clock
synchronization [1]. The median line peaks at 240 ms for
an experiment with one of the highest minTrans. The bars
represent the difference between maxTrans and minTrans.
With medianTrans close to minTrans, maxTrans is very
often an outlier in the experiment. However, these out-
liers matter since they may be a noticeable source of asyn-
chrony for MSV update synchronization. The biggest spike
in this plot is 2.4 seconds. One outlier of 12.7 seconds is
removed from the dataset. This value was recorded by one
of the experiments with the lowest minTrans, so we suspect
that this was due to exceptional behavior in the particular
browser rather than a reflection of normal network behav-
ior. Browser unreliability and inefficiency may play a part
in other outliers as well. These results for maxTrans sug-
gest that introducing delay to completely mask variation in
trans (see Section 5.2) would be impractical if update la-
tency is critical. Note that update latency is only observ-
able by the client that requested the update. Thus, in a
broadcast scenario where all clients except the broadcaster
should be denied access to the update primitive, long update
latency might be quite acceptable.

7.2.3 Synchronization Startup

For each experiment, minTrans is the best basis for clock
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Figure 6: This illustrates how quickly experiments
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synchronization. We have investigated how quickly clients
arrive at a trans estimate close tominTrans. Fig. 6 presents
these results for six different measures of closeness, D. The
line D = 0 reports when minTrans was actually obtained.
As expected, some clients obtain minTrans early and some
late. More surprisingly, in 25% of the experimentsminTrans
was obtained in the very first sample. In about 85% of
the experiments, a trans estimate closer than 25 ms from
minTrans was obtained after 10 samples. These results
show that MSV clients are likely to obtain a decent estimate
for trans quickly, for instance by issuing a modest batch of
redundant requests as part of synchronization startup.

7.2.4 End-to-end Synchronization

Finally, we have conducted an experiment to verify the
end-to-end accuracy of inter-client MSV synchronization, by
videotaping multiple synchronized screens. The media pre-
sentation used in this experiment visualizes a binary clock13.
As the underlying MSV is set in motion, the binary clock
will tick simultaneously (ideally) on all screens. Synchro-
nization error is quantified by mapping visual clock ticks to
frame numbers in the captured video. We have performed
this experiment once, with the MSV server in Tromsø and
three screens at BBC R&D in London. The three screens
are hosted by a Desktop, a Laptop and a Netbook. All three
devices run Chrome browsers. The Desktop and the Laptop
run Windows 7 and are connected to wired LAN, behind
an HTTP proxy server. The Netbook runs Fedora 15 and is
connected via wireless to a different network, with no HTTP
proxy. The camera supports 30 frames per second. With
this frame rate a synchronization error of 33.3 ms between
Web browsers should imply an average difference of 1 frame
in the captured video. The experiment involved recording
a sequence of 47 consecutive clock ticks (5 seconds apart).
The Desktop and the Laptop differed by 0 frames for 35 ticks
and by 1 frame in the 7 remaining ticks. The Netbook dif-
fered from the Desktop by 0 frames for 15 ticks, by 1 frame
for 31 ticks and by 2 frames for 1 tick. These results indi-

13Binary Clock demo at http://goo.gl/ugrj7

cate that the average end-to-end inter-client synchronization
error in this instance is a little less than 1 frame. This is
close to lip-sync accuracy. Note that these results include
error introduced by the Web browsers as they attempt to
synchronize visual output with their local MSV proxies.

8. RELATED WORK

Timelines

Many concepts similar to the Media State Vector have al-
ready been discussed in the scientific literature: timers, time-
lines, virtual timelines, dynamic variables, media clocks. Hy-
Time [4] introduced the notion of a time-based document
and allowed media presentations to be specified declaratively
in relation to an abstract timeline. In Athena Muse [5]
timelines based on integer ranges were used to decouple
channels of timed information. The project also proposed
multi-dimensional media presentations. In TEMPO [6] a
scripting language was introduced to control velocity and
acceleration of computer animations. TBAG [7] used a set
of interdependent constrainables to control 3D animations
under continuous motion. Nsync [8] focused on prediction
and implemented a media clock like the MSV, but without
support for acceleration. In Flash ActionScript14 a media
presentation is constructed by binding event handlers to a
navigable timeline.

The MSV can be viewed as a refinement of these concepts.
It is expressive, yet compact and easy to use. It is explicitly
defined as an independent object, and does not prescribe
a particular execution model. Most importantly though,
the MSV is motivated differently. The above projects use
the timeline concept as a basis for construction and execu-
tion of a single media experience, not as a synchronization
mechanism between components of a distributed media pre-
sentation. The only exception is TBAG [7] where synchro-
nization of constrainables across the Internet is discussed.
These projects complement our thesis by attesting to the
claim that media presentations can be modeled as functions
of motion.

Distributed Media Synchronization

Synchronization of distributed media presentations has been
much explored in the context of continuous AV streams
and multicast networks. Important applications types in-
clude video conferencing, screen sharing and Web-cast. In
MODE [9] video and non-continuous content is multicast
and synchronized between multiple nodes, relative to pre-
defined reference points. ACME [10] and Tactus [11] focus
on the synchronization of multiple source streams into one
single presentation. In ACME a logical time system is devel-
oped for this purpose. Group synchronization over multicast
networks [12, 13, 14] usually depends on introducing delay
at the destinations to mask differences in network latency.
Clock synchronization is either assumed or implemented as
part of the solution.

In contrast, the MSV approach advocates decoupling of
motion from content. This implies that motion and content
can be communicated across different channels and tech-
nologies. The MSV approach makes motion available at the
destinations and allows clients to control content delivery,
by pulling in video streams according to client-side policies.

14http://www.adobe.com/



As long as the client can map MSV behavior to video ser-
vice requests, any stream-based transport mechanism can
in principle be used for the video content. A second im-
plication is that media presentations without stream-based
media may also be synchronized using the same mechanism.
In fact, this challenges established definitions for distributed
multimedia. For instance, Blakowski et al. [15] distinguish
time-dependent and time-independent media and requires
multimedia systems to include at least one time-dependent
media type. This definition must be revised, unless the MSV
itself is considered a media type. Finally, by addressing the
issue of media synchronization at application-level rather
than the transport-level, the MSV approach becomes an in-
stance of the end-to-end argument [16].

Second Screen Scenarios

Second screen scenarios usually involve synchronization of
secondary devices (e.g., smart phones and tablet PCs) to
a primary device (e.g., TV). Disney Second Screen15 al-
lows extra material for movies by synchronizing iPads to
a Blu-ray player across the local network. Orchestrated Me-
dia is a recent BBC project that investigates synchroniza-
tion of secondary devices to broadcast TV using solutions
based on digital watermarking [3] for inter-device synchro-
nization. Howson et al. [17] also recognizes the need for
a distributed event timeline, decoupled from media format
and transport protocol. However, despite being logically in-
dependent, timeline events are still bundled and transmitted
with the content. Kahmann et al. [18, 19] share our vision
of a unified approach to collaboration and secondary screen
scenarios, and focus on session management for collabora-
tive media streaming. A session object is similar to the MSV
in the sense that both encapsulate media control and session
membership. However, the approach is limited to streamed
media on the home network.

The MSV approach challenges current solutions for sec-
ond screen scenarios by suggesting that the local problem
of device synchronization may be solved remotely. In do-
ing this, the MSV approach bypasses many problems asso-
ciated with local network synchronization; device discovery,
time-consuming switching between network carriers, mul-
tiple networks, inter-device communication protocols, etc.
Furthermore, it supports symmetric navigation, view auton-
omy and instance-view independence by avoiding an asym-
metric master-slave relationship between devices. It also re-
moves the need for local hosting of synchronization services
and it simplifies content production for secondary screen sce-
narios, essentially by making it a special case of Web publish-
ing. In short, the MSV approach eliminates the distinction
between home and away.

Synchronization in Web browsers

SMIL [20] is a framework for media synchronization in Web
browsers. SMIL aims to combine the benefits of declarative
authoring typical of video-centric synchronization models,
with the flexibility of timing models typical for animations
and graphics. The framework allows DOM access to control
speed and acceleration. Unlike SMIL, MSV synchronization
does not address authoring. Still, we argue that various
authoring frameworks, including declarative frameworks like
SMIL, could utilize the MSV concept.

15http://disneysecondscreen.go.com

The introduction of HTML5 made it practical to exploit
the timeline of the HTML5 video element as a basis for
synchronized media presentations in Web browsers. We
were inspired by LIMO, a JavaScript framework made by
BBC R&D as part of P2P-Next. LIMO eased construction
of such lightweight, interactive video-based media presenta-
tions. More recently Popcorn.js16 has open sourced similar
functionality and attracted an enthusiastic user base. Both
projects demonstrate the ability of modern Web browsers to
weave together lightweight media presentations in real time,
in response to the motion of the video element. The MSV
approach can potentially increase the utility of these frame-
works, by removing the dependence on the video element,
and by allowing them to become authoring frameworks for
multi-screen media presentations.

SMIL, LIMO and Popcorn all address synchronization in
a single web-document. In contrast, Wijnants et al. [21]
address synchronous media sharing (sMS) on the Web. A
framework is presented that allows regular web-browsers on
heterogeneous devices to concurrently navigate shared me-
dia presentations. Media navigation is restricted to discrete
jumps, making the solution appropriate for slideshow nav-
igation, but not for precise synchronization of continuous
media. Motion and content are weakly decoupled, as sMS
session records (motion) and RSS feeds (content) are inde-
pendently available. However, sMS session records include
references to RSS feeds. Furthermore, the architecture sug-
gests that content and motion must be hosted by the same
sMS server. In contrast, the MSV approach imply that syn-
chronization servers are content agnostic, and that manage-
ment of the mapping between content and motion can be
shifted onto clients, or other application servers.

9. CONCLUDING REMARKS
The primary objective of this paper is to introduce the

concept of the Media State Vector (MSV) and to demon-
strate its utility as a general basis for synchronization of
media presentations. The secondary objective is to suggest
MSV synchronization as a foundation for cloud-based ser-
vices offering generic, multi-device, media navigation across
the Internet. By meeting all the requirements for cloud-
based media presentations we claim that both objectives are
satisfied.

Furthermore, the evaluation performed by current Web
browsers demonstrates the feasibility and potential of this
approach. We argue that maximum synchronization errors
of less than 120 ms (for 80% of the test clients) is already
adequate for a wide range of applications. Observed inter-
device synchronization error of about 33 ms across Europe
shows that MSV synchronization may be precise, even with-
out any optimizations. With further reference to our primi-
tive, application level implementation of clock synchroniza-
tion, we claim that MSV synchronization accuracy can only
be improved.

We find the MSV to be a powerful concept, supported by
the following key ideas: 1) linear motion as a unified ap-
proach to media navigation, 2) decoupling of motion from
content and presentation, 3) media presentations implemented
as functions of motion and content, 4) synchronization of
media by synchronization of motion, and 5) synchronization
of motion across the Internet.

16http://popcornjs.org/



Finally, we are confident that the MSV concept redefines
media presentations by removing significant limitations, and
that it has wide utility in new as well as existing media
applications.
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